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Abstract—Climate change is already altering the prob-
abilities of weather hazards. Accurate prediction of cli-
mate extremes can inform effective preparation against
weather-induced stresses. Accurately forecasting extreme
weather events is a task that has attracted interest for
many years. Classical and to a lesser extent, machine
learning-based approaches have handled this issue; how-
ever, such systems are hard to tune or scale. While the
prediction of extremes has been the subject of investiga-
tion across several communities, including meteorology,
machine learning, and statistics, it has been subject to far
less scrutiny than the prediction of conditional means. In
this work, we offer a systematic comparison of existing
approaches on prediction of maximum temperature. Fur-
ther, motivated by this comparison, we propose a method
to forecast maxima temperature in weather time series
that unifies deep learning with extreme value theory.

I. MOTIVATION

Weather has an enormous impact in our daily lives.
When weather forecasting is effective, we know that
burdensome weather events are not coming tomorrow
or the day after, either. Extreme weather events such as
hurricanes, tornadoes, heavy downpours, heat waves,
and droughts affect all sectors of the economy and
the environment, impacting people where they live and
work (1). According to EM-DAT (International Disaster
Database), more than 60 million people were affected
only in the year 2018 alone by extreme events. – Fore-
casting the occurrence of extreme events in time series
has attracted interest of researchers for many years
(2; 3; 4). Forecasting maxima in weather time series
data is essential for extreme weather events, i.e., an-
ticipating high temperature will help people to prepare
in advance, forecasting high precipitation might help
with flooding events hazards, high-wind speeds with
protecting infrastructure. Forecasting maximum surface
temperature will help to foretell extreme rainfall, which
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is the main factor generating floods, landslides, and soil
erosion and thus can cause environmental, societal, and
economical damages (5).

Forecasting these sources of stress hinges on be-
ing able to forecast extremes accurately, and while
this problem has been viewed from several angles in
the machine learning community, including quantile
regression and extreme value forecasting, there have
been no systematic comparisons. This work provides
a common evaluation of three alternative approaches –
direct prediction using an LSTM, a probabilistic LSTM
with a likelihood common in extreme value theory, and
a quantile regression technique on daily temperature
forecasting problem.

Predicting extreme events such as peak wind (6),
traffic, (7) and electricity demand (8) has become a
common task in both statistics and machine learning
community. In statistics, there is a branch known as
extreme value theory (9).

Classical methods for extreme weather events fore-
casting mostly treat the problem as a full-time se-
ries prediction problem (9; 10). Alternatively, methods
have been developed to model quantiles specifically,
including quantile regression and quantile regression
forests (11), though these are rarely applied to extreme
values. Classical models require hard tuning for the
parameters. Long Short Term Memory (LSTM) (12)
based forecasting gained popularity due to its end-to-
end modeling, automatic feature extraction abilities, and
capacity to learn complex interactions.

A combination of classical time series models and
machine learning methods have been used to pre-
dicting special events (13; 14). Deep convolutional
neural networks based classifiers have been used to
detect extreme weather (15). (16) proposed a multichan-
nel spatiotemporal encode-decoder convolutional neural
network architecture for semi-supervised bounding box
prediction in large climate datasets. Recurrent neural
networks (RNNs), especially LSTMs, have been used
for precipitation nowcasting (17) – when trained on
two-dimensional radar map time series, their system
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is able to outperform the current state-of-art precipita-
tion nowcasting system on various evaluation metrics.
Recently, (18) developed an end-to-end forecast model
for multi-step time series forecasting that can handle
multivariate inputs for extreme events, applying their
system to peak travel prediction.

The questions discussed in this paper are:
• To forecast extreme values of the time series, does

it help to account for the heavy-tailed distributions
expected to arise according to classical statistics
theory, or are modern deep learning or quantile
regression methods sufficient as they are?

• Alternatively, is there some way to combine the
classical theory with modern machine learning in
a way that gets the best of both worlds?

Answering these questions will help both the machine
learning community, by giving insight into where to
invest research effort, and the climate modeling com-
munity, as it suggests best practices in a problem of
practical importance. We are unaware of any deep
learning based methods for climate extreme values or
maxima forecasting in weather time series.

The main contributions of this paper are:
• We provide benchmark experiments of modern

deep learning, the proposed probabilistic LSTM,
and quantile random forest, to evaluate their rela-
tive merits on shared tasks.

• We propose an LSTM model with Gumbel-
distributed errors, as one way to combine classical
theory of extreme values with modern deep learn-
ing.

II. METHODS

We consider three models to forecast maxima in
weather datasets: LSTM, LSTM with a Gumbel like-
lihood, and quantile random forest.

A. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a type of RNN,
capable of learning long-term dependecies that was
designed by Hochreiter et al. (12) to address the van-
ishing and exploding gradient problems of conventional
RNNs. The LSTM model discussed in this paper is
based on the the original LSTM paper (12) with a
hidden layer of LSTM units and an output layer used
to make predictions. We provide multivariate data as
input and forecast the output maxima. Univariate time-
series approaches directly model the temporal domain,
they suffer from a frequent retraining requirement (19).
Hence, we choose multivariate input, allowing the
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Fig. 1: Extracting maxima values from full time series
data. We extract only the maxima from the full time
series over the forecasting horizon. This figure is a
sample of daily maximum temperature for three years
of weather data.

model to learn from multiple features, not only from
the feature being forecasted.

it = σ(xtU
i + ht−1W

i)

ft = σ(xtU
f + ht−1W

f )

ot = σ(xtU
p + ht−1W

o)

C̃t = tanh(WxtU
g + ht−1W

g)

Ct = σ(ft ∗ Ct−1 + it ∗ C̃t)
ht = tanh(Ct) ∗ ot.

(1)

In Equation 1 i is input gate, f is forget gate and
o is output gate. W is the recurrent connection at the
previous and current hidden layer while U is the weight
matrix connecting the inputs to the current hidden layer.
C̃ is a candidate hidden state that is computed based
on the current input and the previous hidden state. C
is the internal memory of the unit. The output hidden
state ht is computed by multiplying the memory with
the output gate as shown in Equation 1.

B. LSTM + Gumbel-Markov model

In our next approach we add a Gumbel distribution
and Markov stochastic model to the LSTM model.
The Markov model is based on (20) and discussed
in (21). The cumulative distribution function (CDF)
and probability density function (PDF) for the Gumbel
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distribution are given in Equation 2 and Equation 3
respectively.

F (x;µ, β) = exp

(
− exp

(
−x− µ

β

))
(2)
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β
exp

(
x− µ
β

)
exp

(
− exp

(
x− µ
β

))
(3)

The mode is µ, while the median is µ− β ln (ln 2) ,
and the mean is given by : E(X) = µ + γβ where
γ ≈ 0.5772 is the Euler-Mascheroni constant.

At the mode, where x = µ, the value of F (x;µ, β)
becomes e−1 ≈ 0.37 for whatever the value of β.

We use a Markov model to describe the sequence
of possible extremes, requiring the distribution of the
extreme value to depend only on the state attained at
the previous time point,

Pr(Xn+1 = x | Xn = y) = Pr(Xn = x | Xn−1 = y)

For the standard Gumbel distribution where µ = 0 and
β = 1, then CDF states in Equation 2 will be F (x) =
e−e

(−x)

and the PDF states in Equation 3 will be f(x) =
e−xe−e

x

.
We optimize the Gumbel likelihood over the features

learned by LSTM. The negative log-pdf of a Gumbel
distribution (parameterized by µ and β) is

− log p (xt;µ, β) = log β − xt − µ
β

+ exp

(
−xt − µ

β

)
Here, we parameterize the mode µ by learned features
ht from the LSTM at the same timepoint. We consider
them a linear function of those features, i.e. µ(ht) =
wTht. If we force β = 1, then this expression becomes

− log p (xt|ht;w) = −xt + wTht + exp
(
−
(
xt − wTht

))
For an LSTM the representations ht =

fθ (xt−∆, . . . , xt), parameterized by θ, must be
learned, along with the Gumbel parameter w. We
approach this using maximum likelihood. Specifically,
if xi :=

(
xi(t−∆), . . . , xit

)
is the ith window, we

minimize

−
∑
i,t

log p (xit|hit;w)

=
∑
i,t

−xit + wThit + exp
(
−
(
xit − wThit

))
.

We take a minibatch of xi and backpropagate through
this loss, updating our estimates for θ and w based on
the gradient.

C. Quantile Random Forest

Quantile random forests are a variant of random
forests that maintain the empirical distribution of all
points at leaves in every component tree, as opposed to
taking the mean in every leaf, as in standard random
forests. This allows the model to provide estimates of
arbitrary quantiles at any input x. This is in contrast
with standard quantile regression methods – including
those based on deep learning – which learn to target
specific quantiles by optimizing an asymmetric absolute
error loss.

Specifically, to estimate the α-quantile at a posi-
tion x, the method proceeds as follows. First, grow a
collection of trees according to the split criterion in
standard random forests. For the tth tree, define the
weight, wi (x) = 1

|Lt(xi)| if x is in the same leaf as
xi in the tth tree, and 0 otherwise, where |Lt (xi)|
is the number of observations in that leaf of the tth

tree. That is, observations xi far from x shouldn’t get
any weight, and large leaves should be downweighted.
Finally, average the weights across trees into a sin-
gle wi (x), and use them to estimate the distribution
function, F̂ (y|x) =

∑
wi (x)1{yi ≤ y}. From this

distribution function, any quantile can be extracted.

D. Data

The dataset1 considered in this work is based on
Environment and Climate Change Canada data, the
dataset has 148 years of recorded data with 68 features.

Maximum temperature is extracted from the daily
temperature during the forecast period Figure 1. We
use pushforwards imputation to fill missing values and
interpolate values onto evenly spaced timepoints. We
prepared the data as maxima for the extreme value
which needs to be forecasted and their representative
multivariate inputs. An example of a raw dataset is
shown in Figure 2 (top). We prepared the training
dataset by splitting the raw data into sliding windows
(Figure 2, bottom). The input xi includes the 30 most
recent observations, and yi are the maxima over the
next two weeks. We used temporal cross-validation to
evaluate in sliding windows.

E. Experiments

The network was trained and tested using NVIDIA
Tesla K80 GPU, leveraging with NVIDIA CUDA
Toolkit (22). We use the pytorch (23) library for im-
plementation. The code is publicly available2.

1https://montreal.weatherstats.ca/
2https://github.com/isrugeek/climate extreme values

https://montreal.weatherstats.ca/
https://github.com/isrugeek/climate_extreme_values
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Fig. 2: This figure displays sample maxima from the
based on Environment and Climate Change Canada
data. Top: Sample input to our model. Bottom: Descrip-
tion of sample creation. We create two sliding windows,
one for xit and another for yit.

III. EVALUATION

In this section, we present results from the meth-
ods we discussed and benchmark them relative to the
ground truth. We understood that that LSTM method
discussed at the page subsection II-A with more dat-
apoints has improved accuracy, missing points be-
tween datapoints will strongly affect the performance
of subsection II-A. We notice that interpolation as
pre-processing and quantiles in the sample improves
the performance. Results from all methods are shown
in Table I, and the forecasting results are shown in
Figure 3.
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Fig. 3: Ground truth (GT) and prediction comparison
of two models on the Canada weather dataset.

We calculate mean absolute error (MAE) see Equa-
tion 4 to measure the errors in a set of predictions, when
n is number of samples, y actual value (GT) and ŷ is
the predicted value.

MAE =
1

n

n∑
t=1

|yj − ŷj | (4)

TABLE I: Forecasting error for LSTM, LSTM + Gum-
bel Markov and quantile random forest model on two
different datasets.

METHOD MAE RMSE

LSTM 0.3828± 0.0664 0.3075± 0.004
LSTM + GM 0.3252± 0.0087 0.3072± 0.009
QRF 0.50±0.04 0.411±0.06

IV. DISCUSSION AND FUTURE WORK

In this paper, we have contrasted existing machine
learning and statistical approaches to extreme value
modeling, and then we proposed a way to combine
the perspectives. We have also evaluated the three
models performance in forecasting maximal values on
public weather dataset. From our experience (a) LSTM
has more trouble on heavy-tailed distributions than
the Gumbel-Markov model, (b) directly predicting the
maximum of distribution does better than producing a
forecast and extracting the maximum from that forecast,
(c) a combination of the LSTM + Gumbel-Markov
model outperforms LSTM or quantile random forest
methods with respect to sample complexity and MAE,
and the improvement can be traced to the LSTM’s high
flexibility and the Gumbel model’s ability to deal with
heavy tails. In the future, we hope to extend these
ideas to the classification of weather extremes, and we
will study the effectiveness of our approach on other
quantiles and at different time horizons in an extended
version of this paper.
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